Gaussian Process Models in Spatial Data Mining
نویسندگان
چکیده
ion of GeoDatabases Geographic Database Conceptual Modeling Modeling with a UML Profile Geographic Databases Spatio-temporal Database Modeling with an Extended Entity-Relationship Model Geographic Dynamics, Visualization and Modeling MAY YUAN Department of Geography and Center for Spatial Analysis, University of Oklahoma, Norman, OK, USA
منابع مشابه
Spatial modelling of zonality elements based on compositional nature of geochemical data using geostatistical approach: a case study of Baghqloom area, Iran
Due to the existence of a constant sum of constraints, the geochemical data is presented as the compositional data that has a closed number system. A closed number system is a dataset that includes several variables. The summation value of variables is constant, being equal to one. By calculating the correlation coefficient of a closed number system and comparing it with an open number system, ...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملSpatial Latent Gaussian Models: Application to House Prices Data in Tehran City
Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...
متن کاملGaussian Process Models of Spatial Aggregation Algorithms
Multi-level spatial aggregates are important for data mining in a variety of scientific and engineering applications, from analysis of weather data (aggregating temperature and pressure data into ridges and fronts) to performance analysis of wireless systems (aggregating simulation results into configuration space regions exhibiting particular performance characteristics). In many of these appl...
متن کاملPrediction of the main caving span in longwall mining using fuzzy MCDM technique and statistical method
Immediate roof caving in longwall mining is a complex dynamic process, and it is the core of numerous issues and challenges in this method. Hence, a reliable prediction of the strata behavior and its caving potential is imperative in the planning stage of a longwall project. The span of the main caving is the quantitative criterion that represents cavability. In this paper, two approaches are p...
متن کاملApplication of truncated gaussian simulation to ore-waste boundary modeling of Golgohar iron deposit
Truncated Gaussian Simulation (TGS) is a well-known method to generate realizations of the ore domains located in a spatial sequence. In geostatistical framework geological domains are normally utilized for stationary assumption. The ability to measure the uncertainty in the exact locations of the boundaries among different geological units is a common challenge for practitioners. As a simple a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008